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Abstract 

In intensive care, physiological variables of the criti-
cally ill are measured and recorded in short time in-
tervals. The proper extraction and interpretation of the 
essential information contained in this flood of data 
can hardly be done by experience alone. Typically, 
decision making in intensive care is based on only a 
few selected variables. Alternatively, for a dimension 
reduction statistical latent variable techniques like 
principal component analysis or factor analysis can be 
applied. However, the interpretation of latent vari-
ables extracted by these methods may be difficult. A 
more refined analysis is needed to provide suitable 
bedside decision support. Graphical models based on 
partial correlations provide information on the rela-
tionships among physiological variables that is help-
ful for variable selection and for identifying interpret-
able latent components. In a comparative study we 
investigate how much of the variability of the ob-
served multivariate physiological time series can be 
explained by variable selection, by standard principal 
component analysis and by extracting latent compo-
nents from groups of variables identified in a graphi-
cal model.  

Introduction 

In intensive care, clinical information systems acquire 
and store physiological variables and device parame-
ters online at least every minute. A physician may be 
confronted with more than 200 variables in the criti-
cally ill during typical morning rounds1. Detection of 
critical states and of intervention effects based on 
these data is of great importance for bedside decision 
support. It should also be noted that constant informa-
tion overload is one contributing cause for prevent-
able medical errors2,3. 
A statistical analysis of the recorded data exhibits 
strong correlations e.g. between the variables of the 
hemodynamic system (different types of blood pres-
sures, heart rate, pulse, and blood temperature) meas-
ured at short time intervals. Multivariate time series 
modeling should appropriately reflect the dependen-
cies among these variables. This claim usually leads 
to complex models involving numerous parameters 
and requiring a high amount of data to enable reliable 
inference. Thus, suitable strategies for dimension re-
duction are also required when applying automatic 

statistical techniques as the available data often does 
not suffice to model the full set of variables. This 
problem is known as the curse of dimensionality.  
Thus, besides the aim of detecting changes in the pa-
tient’s conditions, reducing the number of variables is 
a further task. Typically, some of the variables are se-
lected according to personal experience. Of course, 
this is subjective, and it is important to know which 
and how much information we neglect in the reason-
ing process based on such a selection. The selection 
should be guided by information on the relationships 
between the variables. Statistical techniques like fac-
tor and principal component analysis allow to extract 
latent, i.e. unobservable variables which describe the 
correlations among the observed variables better and 
capture more of their variability than a simple vari-
able selection. However, such latent variables are of-
ten not meaningful although it is important that they 
can be interpreted by healthcare professionals if we 
wish to make decisions about interventions or 
changes of treatments.  
In order to overcome these difficulties we apply 
graphical interaction models. These models have be-
come an important tool for investigating and model-
ing relationships in multivariate data as they allow a 
simple graphical visualization. The variables are rep-
resented by vertices and the relationships between the 
variables are illustrated by edges. Separations in the 
graph provide information about direct and indirect 
relationships in the data4,5,6,7. In the following we ex-
ploit the separation properties of partial correlation 
graphs and relate them to dynamic factor models. 
This allows extraction of latent variables which are 
meaningful and explain more of the observed vari-
ability in the data than a simple variable selection. 

Methods 

Data set. On the surgical intensive care unit of the 
Klinikum Dortmund, a tertiary referral centre, online 
monitoring data was acquired from 25 consecutive 
critically ill patients (9 female, 16 male, mean age 66 
years) with extended hemodynamic monitoring re-
quiring pulmonary artery catheterization, in one min-
ute intervals with a standard clinical information sys-
tem. This data was transferred into a secondary SQL 
database and exported into standard statistical soft-
ware for further analysis. A total of 129943 sets of 
observations were analyzed.  



In the analysis we concentrated on the variables heart 
rate HR, pulse PULS, arterial diastolic pressure APD, 
arterial systolic pressure APS, arterial mean pressure 
APM, pulmonary artery diastolic pressure PAPD, 
pulmonary artery systolic pressure PAPS, pulmonary 
artery mean pressure PAPM, central venous pressure 
CVP and blood temperature Temp. In order to elimi-
nate artifacts and irrelevant short-term fluctuations we 
removed outliers for each variable individually using 
a robust procedure based on the repeated median, 
which allows to preserve trends as well as sudden 
level shifts in the data8,9. Thus we retain the relevant 
variability in the data when reducing the dimension, 
but not irrelevant outliers. 
Partial correlation graphs. Between multiple vari-
ables usually a multitude of relationships exists, but 
many of them are indirect, i.e. they are induced by 
others. Distinguishing between direct and induced 
relationships among the observed variables is difficult 
from experience alone. Graphical models based on 
partial correlations reveal the essential relationships 
which are not induced by other variables. Visualiza-
tion of a graphical model is accomplished by a graph: 
We draw a circle for each variable and connect each 
pair of variables by an undirected edge (a simple line) 
representing a symmetrical interaction whenever the 
relation between these variables persists after condi-
tioning on all the other variables. Missing edges 
indicate the indirect character of some marginal rela-
tionships which are induced by underlying condi-
tional dependencies. Indirect relationships can result 
from successively ordered direct influences. A subset 
of the variables is called complete if each pair of 
these variables is connected by an edge, i.e. if none of 
these relationships is indirect.  
From a statistical point of view, measurements of 
physiological variables observed in short time inter-
vals constitute multivariate time series as there may 
be interactions not only between instantaneous but 
also between time-lagged observations. Therefore we 
use partial correlation graphs for multivariate time 
series10,11,12. Here, linear relationships between all 
pairs of variables at all time lags are investigated con-
trolling for the linear effects of the other variables at 
all time lags, i.e. after all linear effects of the other 
series have been removed13. These relationships are 
called partial correlations and can be expressed equi-
valently in the frequency domain using the partial 
spectral coherency, that measures the partial correla-
tions at all frequencies. Hence, partial correlation 
graphs allow to detect relationships in form of partial 
linear, possibly time-lagged dependencies between 
the variables of a multivariate time series. Moreover, 
under some weak regularity assumptions we can in-
terpret the separations found in a graphical model. It 
has already been shown that ''empirical relationships” 
found by partial correlation graphs correctly represent 

''physiological relationships'' based on medical know-
ledge within the hemodynamic system14.  
Dynamic factor models and partial correlation 
graphs. Dynamic factor analysis allows to model a 
multivariate time series using a lower dimensional 
process of latent, i.e. unobserved variables called fac-
tors. A simple dynamic factor model for an observed 
multivariate time series Y(t) is given by 
  Y(t) = Λ X(t) + ε(t) 
with an unobserved factor process X(t) of latent vari-
ables and an error process ε(t), each following a vec-
tor autoregressive model, which is a standard statisti-
cal model for multivariate time series data15. Here, Λ 
is a matrix of unknown parameters called loadings. If 
we observe d variables, i.e. Y(t) is d-variate, and 
model the data using k latent variables, i.e. X(t) is k-
variate, k<d, then the loading at the (i,j)-th position in 
the (d x k)-matrix Λ describes the impact of the j-th 
factor on the i-th observed variable.  If for a factor 
many of its loadings are close to zero we can identify 
it with the group of observed variables for which the 
loadings are large in absolute value.  This model can 
be fitted to the observed data by analyzing the auto-
covariance matrices at the first few time lags similarly 
to performing an ordinary principal component analy-
sis16. More general factor models can be formulated 
where Y(t) is not only influenced by instantaneous 
factors X(t), but also by time-lagged factors X(t-h). 
However, identification and fitting such more general 
models is difficult since more parameters need to be 
estimated and since we need to decide which time 
lags should be considered.  
Assuming that the spectral density matrix of the mul-
tivariate stationary time series Y(t) is regular at all 
frequencies, an algorithm has been derived for con-
struction of the partial correlation graph for the ob-
servable variables given an underlying factor model 
of very general form17. It turns out that in case of un-
correlated factors and uncorrelated error processes a 
pair of observed variables (A,B) is connected by an 
edge if and only if both variables have nonzero load-
ings for one of the factors, or a sequence of variables 
A1,..., Am exists such that all of the pairs (A, A1), 
(A1,A2), ..., (Am, B) fulfill the former condition. 
This allows to deduce suitable assumptions for a fac-
tor model from a preliminary data analysis using par-
tial correlation graphs. Particularly, the resulting 
graph provides an assistance in identifying the num-
ber and types of factors. It seems straight forward to 
identify a complete subset in a partial correlation 
graph for the observable process with a latent factor. 
However, the identification of such common factors 
can be obscured since dependencies within the error 
process ε(t) or between the factors can result in addi-
tional edges in the partial correlation graph. Neverthe-
less, it seems reasonable to attribute strong relations 
to the factors and weaker ones to the errors.  



Results 

In order to get a general impression about the rela-
tionships between the hemodynamic variables we 
constructed a partial correlation graph for each pa-
tient. The program Spectrum18 was used for the cal-
culations.  A typical example of such a graph result-
ing from a joint analysis of the partial spectral coher-
encies between all pairs of variables is shown in Fig-
ure 1. We use different edges for indicating different 
strengths of relationships as measured by the area be-
low the partial spectral coherencies12. 
Figure 1: Partial correlation graph, one step selection. 
Different line types depict different strength of partial 
correlation. 

 
The partial correlation graphs obtained from such a 
one-step selection generally match expected physio-
logical relationships14. However, strong relationships 
may overlay weaker relationships so that the latter 
may be difficult to detect when estimating all partial 
linear relations jointly. Such masking effects can be 
overcome by applying a stepwise search strategy for 
model selection using separation properties of graphi-
cal models19. Starting from the initial classification 
obtained from the one-step selection, we checked this 
classification estimating the partial spectral coheren-
cies in suitably chosen subgroups of the variables not 
changing the initial classification by more than one 
category19. Figure 2 shows the partial correlation 
graph resulting from the application of this stepwise 
search strategy for the same patient as before.  
For all patients strong relationships could be identi-
fied between the arterial pressures (APS, APD, 
APM), between the pulmonary artery pressures 
(PAPS, PAPD, PAPM) and between heart rate and 
pulse, the strength of the relation between the systolic 
and the diastolic pressure being always lesser than 
between each of these and the corresponding mean 
pressure. Application of the stepwise search strategy 
revealed that CVP is strongest related to the pulmo 

Figure 2: Partial correlation graph, final selection. 
Different line types depict different strength of partial 
correlation. 

 
nary artery pressures, while the temperature does not 
have strong relationships to any of the other variables. 
Hence, we can identify groups of strongly related 
variables from the partial correlation graphs. Such a 
partitioning of the variables into strongly related sub-
groups can be used for variable selection. The ab-
sence of edges between two groups of variables 
means that the variables in one of these groups do not 
add any information on the variables in the other 
group given the measurements of the remaining vari-
ables. On the other hand, if a variable has strong rela-
tionships to several other variables it provides a lot of 
information. Selecting APM from the strongly related 
subgroup of arterial pressures and neglecting APD 
and APSYS for clinical monitoring is therefore mean-
ingful from a statistical point of view. The same ap-
plies to pulmonary artery pressures. Hence, we might 
end up with the selection PAPM, APM, HR and 
Temp based on the information obtained from the 
partial correlation graphs. 
An alternative approach for dimension reduction is to 
extract latent variables from the observed time series 
which capture as much of the total variability as 
measured by the trace of the covariance matrix as 
possible. We scale the time series to unit variance and 
perform a standard principal component analysis 
based on correlations in order to explain as much of 
the total variability measured by the trace of the cor-
relation matrix as possible. 
Table 1 gives minimum (Min), maximum (Max), me-
dian (Med) and the upper and lower quartile (UQ and 
LQ) of the percentage of total variability explained by 
1, 2, ..., 7 principal components for the 25 patients. 
We deduce that four principal components capture 
more than 90% of the total variability for half of the 
patients, and at least 85% for all of them, see the col-
umn Med and Min, respectively. Based on this crite-
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rion we would probably use four principal compo-
nents for an online monitoring, which is the minimal 
number of variables as suggested by the partial corre-
lation graphs. After application of the automatic 
varimax rotation, which orthogonally transforms the 
directions of the extracted components to have many 
entries close to zero while spanning the same k-
dimensional subspace,   we can even associate the ex-
tracted latent variables with the groups found in the 
partial correlation graphs, see Table 2. However, 
these latent variables are still mixtures of all observed 
variables as all loadings are distinct from zero. 
Table 1: Percentage of total variability explained by 
the first k components, k = 1, 2,..., 7. 

k Min LQ Med UQ Max 
1 36.0 40.7 43.2 44.6 49.7
2 61.2 64.4 66.9 70.9 78.5
3 75.9 79.5 81.7 84.9 91.1
4 85.0 87.5 90.3 91.3 94.3
5 91.7 92.8 94.5 95.7 96.9
6 95.8 96.4 97.2 97.6 98.4
7 97.8 98.5 98.6 98.9 99.4

 
Table 2: Loading matrix after varimax rotation for 
one patient. The components can be identified with 
HR and PULS, the intrathoracic pressures, the arterial 
pressures and the temperature, respectively. 

PAPS -0.256  0.441  0.045 -0.275
PAPM -0.071  0.533  0.019 -0.065
PAPD  0.074  0.493  0.064  0.180
CVP  0.172  0.508 -0.090  0.033
APS  0.123  0.112  0.419  0.056
APM -0.032 -0.037  0.648 -0.016
APD -0.056 -0.064  0.624 -0.034
HR  0.659  0.008  0.022 -0.023
PULS  0.659  0.010  0.022 -0.022
TEMP -0.078  0.045  0.015  0.938

In order to further improve the interpretation of the 
extracted components we can extract one component 
from each group applying the simple dynamic factor 
model mentioned above separately to each group. 
Only from the group consisting of heart rate and pulse 
instead of extracting a latent variable we select the 
heart rate as its measurements, derived from ECG, are 
often more reliable.  
In the following we compare the percentage of vari-
ability explained by a variable selection (VS) consist-
ing of PAPM, APM, HR and Temp, by standard prin-
cipal component analysis (PCA) and by the restricted 

factor analysis (RFA). For this we regress the ob-
served variables on the selected variables and on the 
extracted components, respectively. Then we investi-
gate the total residual variance as well as the residual 
variance for all variables separately. For a selected 
variable this residual variance is zero, of course.  
Table 3 shows the minimum, the maximum, the me-
dian and the lower and the upper quartile of the per-
centage of total variability explained by PCA, a vari-
able selection and a restricted factor analysis for the 
same 25 patients as before. It can be deduced that the 
variable selection explains the main part of the total 
variability, at least about 80% in all cases considered 
here, see Min, but less than an ordinary PCA with the 
same number of components, of course. Performing a 
restricted factor analysis allows to regain some of this 
loss still providing meaningful latent variables. While 
the variable selection explains more than 85% of the 
total variability for half of the patients (Med), the ex-
tracted factors do so for about 75% of the patients 
(LQ), and the worst case (Min) almost increases to 
the lower quartile for the variable selection.  
 
Table 3: Percentage of total variability explained by 
PCA, variable selection and restricted factor analysis. 

 Min LQ Med UQ Max 
PCA 85.0 87.5 90.3 91.3 94.3
VS 79.6 83.3 85.5 87.3 91.3
RFA 82.5 85.5 87.9 89.9 93.4

Table 4 shows that extracting one component from 
each group increases the explained variability for the 
variables not captured well by the variable selection 
substantially, see CVP for instance. At the same time 
the factors describe the variables included in the se-
lection very well. When performing a PCA, however, 
the percentage of captured variability is about 80% or 
even more for 75% of the patients and each of the 
variables, which is quite high (see the column LQ). 
Table 4: Percentage of variability of the individual 
variables explained by PCA, variable selection and a 
restricted factor analysis. 

 LQ Med UQ LQ Med UQ 
 PAPS PAPM 
PCA 81.4 85.6 89.8 94.3 95.8 97.4
VS 66.3 81.0 85.6 100.0 100.0 100.0
RFA 71.9 81.1 84.1 93.4 94.6 96.8
 PAPD CVP 
PCA 84.7 88.6 91.3 79.8 84.6 90.5
VS 75.5 81.8 86.7 38.5 54.5 64.6
RFA 79.6 85.0 90.1 58.9 71.2 78.5



 HR PULS 
PCA 93.6 94.8 97.5 92.9 95.5 97.4
VS 100.0 100.0 100.0 89.7 92.9 97.0
RFA 100.0 100.0 100.0 89.6 92.9 97.0
 APS APM 
PCA 83.1 87.2 90.3 95.0 95.9 97.0
VS 63.4 75.1 81.2 100.0 100.0 100.0
RFA 74.4 83.5 87.0 95.8 96.5 96.8
 APD TEMP 
PCA 83.9 87.7 92.1 83.9 87.6 92.6
VS 76.0 81.7 87.5 100.0 100.0 100.0
RFA 80.6 86.0 90.4 100.0 100.0 100.0

 

Conclusion 

Statistical methods for dimension reduction aim at 
condensing the information provided by a high-
dimensional time series into a few essential variables. 
In this regard, partial correlation graphs are a suitable 
tool since they help to explore the relations among the 
observable variables. The insights gained by this 
method can result in an improved online monitoring 
of vital signs as they allow an advanced application of 
dimension reduction techniques. One possibility is to 
select suitable subsets of important variables from the 
graphs. Alternatively, we can deduce information on 
the partial correlation structure from the partial corre-
lation graph to enhance latent variable techniques. 
Deducing restrictions on the loading matrix from a 
graphical model means a compromise between vari-
able selection and standard principal component 
analysis as the percentage of explained variability 
will typically be higher than for a variable selection 
and we get meaningful latent variables. In our study 
the groups of closely related variables obtained from 
the data analysis agree with the groups anticipated 
from medical knowledge. Although in more complex 
situations the results may be less clear-cut than in the 
situation considered here, we expect to gain reliable 
insights when applying this methodology to time se-
ries describing other variables, for which we have less 
medical knowledge so far.  
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